CCRN Review: The Pulmonary System

The pulmonary system exists for the purpose of gas exchange

Pulmonary: 18%

- Acute Lung Injury (ARDS)
- Acute Pulmonary Embolus
- Acute Respiratory Failure
- Acute Respiratory Infections
- Air-leak Syndromes (Pneumo)
- COPD, Status Asthmaticus, Chronic Bronchitis, Emphysema
- Pulmonary HTN
- Thoracic Surgery and Trauma

CNS Control of Respirations

- Peripheral chemoreceptors located in carotid body and aortic body
- Sensitive to changes in the PO2, with hypoxemia stimulating chemoreceptor discharge
- Minor role in sensing PCO2

Gas Exchange Process: 4 Steps

- Step 1 – Ventilation
- Step 2 – Diffusion
- Step 3 – Perfusion
- Step 4 – Diffusion

CNS Control of Respirations

- Respiratory generator
 - Located in the medulla
 • Medulla responds to changes in CO2 and pH
 • Respond, not directly to PCO2, but the pH of the ECF surrounding chemoreceptor
 - Input from other CNS regions
 • Pons
 • Normal, coordinated breathing
 • Cerebral Cortex
 • Exerts a conscious or voluntary control over ventilation

Step 1 – Ventilation

- Moving air between atmosphere & alveoli
- Measures
 - Minute ventilation
 • RR x TV
 - Indirect pCO2
Step 2 – Diffusion

- Gases are moved across the alveolar-capillary membrane to the pulmonary bed
- Occurs down a concentration gradient – no active metabolic work takes place
- Measures
 - ABGs
 - Pulse oximetry
 - A-a gradient – indicates if gas transfer is normal
 - P/F Ratio -

CO2 transport

- Carried in the blood in 3 forms
 - Physically dissolved (PaCO2)
 - Chemically combined with Hgb (carbaminohemoglobin)
 - As bicarbonate through a conversion reaction

Step 3 – Transport of Gases

- Transport of gases in the circulation with 97% bound to hemoglobin & 3% dissolved in plasma

- Measures
 - Oxyhemoglobin dissociation curve

Step 4 – Diffusion

- Process by which gases are moved between systemic capillary bed and body tissues
 - Hypoxemia – Low O2 in the blood stream
 - Hypoxia – Low O2 in tissue

Normal Lung Function

- Requires dry, patent alveoli, closely situated to appropriately perfused capillaries

- The normal pulmonary capillary endothelium is selectively permeable
 - serum protein remains intravascular
 - fluid crosses the membranes under the control of hydrostatic & osmotic forces
Balance of Hydrostatic & Osmotic Forces

- Allows small quantities of fluid into the interstitium
- Mechanisms to prevent alveolar edema
 - Retained intravascular protein
 - Interstitial lymphatics
 - Return large quantities of fluid to the circulation
 - Tight junctions between alveolar epithelial cells
 - Prevent leakage into the air spaces

Oxyhemoglobin Dissociation Curve: Shifts

- Shift to the Right
 - More O₂ is unloaded for a given PO₂
 - Increases O₂ delivery to the tissue
 - Caused by
 - Acidosis
 - PCO₂ increase
 - Increase in body temperature
- Shift to the Left
 - O₂ is not dissociated from Hgb until tissue and capillary O₂ very low
 - Decreases O₂ delivery to the tissue
 - Caused by
 - Alkalosis
 - PCO₂ decrease
 - Carbon monoxide poisoning

Other General Principles

- Transport of oxygen to body tissues mostly influenced by CO₂, Hgb concentration and O₂/Hgb binding and releasing factors.

Answer

- pH 7.18
- pCO₂ 80
- pO₂ 35
- HCO₃ 29

- A shift to the right!
- More O₂ is unloaded for a given PO₂
 - Increases O₂ delivery to the tissue
Questions thus far??????

Acute Respiratory Failure
• Impairment of oxygenation and / or ventilation
 – Pao2 < 55 mmHg or Sao2 < 88%
 – Paco2 > 50-55 mmHg with accompanying acidemia, or pH < 7.30

Diagnostic Studies
• ABG
 – Decreased PaO2 and / or
 – Hypercapnia
• Radiologic
 – Findings depend on primary disease

Management
• Noninvasive VS invasive ventilation
• Positioning
 – HOB elevated 30°
 • Maximize ventilation
 • Prevent aspiration
• Skin care
• Pain management / sedation
• Nutrition
• ATBs as appropriate

Signs & Symptoms
• Dyspnea
• Neuro:
 – Hypoxemia
 • Anxiety, irritability, restlessness, confusion
 – Hypercarbia
 • H/A, lethargy, confused, obtunded, coma
• Pulmonary
 – Flared nostrils, increased respiratory rate, use of accessory muscles, dyspnea, SOB
• Cardiovascular
 – Tachycardia, bounding pulses, dysrhythmias

Indications for Mechanical Ventilation
• Pneumonia
• COPD
• ARDS
• Pulmonary edema
• Lung trauma
• Asthma
• Near Drowning
• Multiple sclerosis
• Muscular dystrophy
• Myasthenia gravis
• Spinal cord injury
• General anesthesia
• Overdose
• Obesity
Goals of Mechanical Ventilation

- Provide adequate ventilation
 - direct measure is minute ventilation (6-8 liters per minute)
 - indirect measure is CO2 of arterial blood (35-45)
- Provide adequate oxygenation
 - measured by pO2 of arterial blood gas
 - if correlation has been established, can be inferred by peripheral oxygen saturation

Complications from O2 Therapy

- Oxygen toxicity
 - An oxygen concentration in excess of 50% for > 24 hours increases the potential for development of oxygen toxicity & lung damage
 - Can impair Alveolar type II cells
 - These cells produce surfactant!

Provide Adequate Ventilation

- Hypoventilation
 - High PaCO2
 - Respiratory acidosis
 - Inadequate minute ventilation
- How do we correct???
 - Assure adequate minute ventilation
 - TV x RR = minute ventilation
- Hyperventilation
 - Low PaCO2
 - Respiratory alkalosis
 - Excessive minute ventilation
- How do we correct???
 - Assure appropriate minute ventilation
 - TV x RR = Minute Ventilation

Provide Adequate Oxygenation

- Maximal alveolar ventilation increase oxygen exchange
- Deliver high level of oxygen
- Add PEEP to better inflate alveoli thus improving oxygen exchange

Other Considerations

- Nitrogen
 - Most plentiful gas (normally)
 - Promotes alveolar expansion
 - When completely displaced by 100% oxygen
 - Can result in atelectasis

PEEP

- Improves oxygenation by maintaining alveolar airflow during expiration
 - Airways have a tendency to collapse during expiration as a result of increasing pressure outside the airway
- Optimal levels are achieved by the lowest level of PEEP needed to raise the PaO2 without resulting in cardiovascular compromise (5-15 common)
ARDS

• A syndrome of acute respiratory failure characterized by non-cardiac pulmonary edema and manifested by refractory hypoxemia caused by intrapulmonary shunt

• Nearly always occurs suddenly

• Overall mortality of ARDS ranges from 25% to 58%

PaO2/FiO2 Ratio

• A ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen.

 • Normal is 300-500 mmHg

 • FiO2 is expressed as a decimal.

ARDS Definition

• A syndrome of acute respiratory failure characterized by non-cardiac pulmonary edema and manifested by refractory hypoxemia caused by intrapulmonary shunt

• ARDS refers to the severe end of the spectrum of ‘Acute Lung Injury’ (ALI).

Examples

• WNL - a patient has PaO2 of 90 (normal 80-100) on room air (21%)

 \[\frac{90}{0.21} = 428 \text{ mmHg} \]

• ALI - a patient has a PaO2 of 90 on FiO2 of 40%

 \[\frac{90}{0.40} = 225 \text{ mmHg} \]

What is Acute Lung Injury?

• Defined as syndrome of acute and persistent lung inflammation with increased vascular permeability.

• Characterized by 3 clinical features

 – Bilateral radiographic infiltrates

 – PaO2/FiO2 ratio between 201-300 mmHg.

 – No clinical evidence of an elevated left atrial pressure. If measured, PAOP in \(\leq 18 \) mmHg.

ARDS = ALI + Worse Hypoxia

• ARDS

 – Hypoxia is WORSE

 – PaO2/FiO2 \(\leq 200 \) mmHg

• Distinction between ALI and ARDS is somewhat arbitrary, since the degree of gas exchange disturbance does not correlate reliably with the extent of the underlying pathology.
Example #1 – a patient has a \(\text{PaO}_2 \) of 60 on \(\text{FiO}_2 \) of 80%
- \(\text{P/F ratio} = \frac{60}{0.80} = 75 \text{ mmHg} \)

Example #2 – a patient has a \(\text{PaO}_2 \) of 50 on \(\text{FiO}_2 \) of 100%
- \(\text{P/F ratio} = \frac{50}{1.0} = 50 \text{ mmHg} \)

Epidemiology
- Within ICUs, approximately 10-15% of admitted patients meet criteria for ARDS
- Up to 20% of mechanically ventilated patients meet criteria of ARDS!

Causes
- More than 60 causes of ARDS have been identified
- Additional causes continue to emerge as adverse pulmonary reactions to new therapies are discovered.

Common Causes
- Sepsis – most common cause
- Aspiration
- Infectious pneumonia
- Severe trauma
- Surface burns
- Multiple blood transfusions (>15)
- Leukoagglutinin reactions
- Pancreatitis
- Drug overdose
- Near drowning
- Smoke inhalation
- Cardiopulmonary bypass
- Pulmonary contusion
- Multiple fractures
- Following upper airway obstruction
- Drug reaction
- Venous air embolism
- Neurogenic pulmonary edema
- Acute eosinophilic pneumonia
- Bronchiolitis obliterans
- Organizing pneumonia (BOOP)
- Miliary TB
ARDS: Pathophysiology

• Acute phase - damage to integrity of the blood-gas barrier
 – Damage to type 1 alveolar epithelial cells
 – Increased endothelial permeability
 – Interstitial edema is found
 – Leakage of protein-containing fluid into the alveoli
 – Impaired production and fx of surfactant

ARDS: Pathophysiology

• Resultant physiologic abnormalities
 – Shunting of blood through atelectatic or fluid-filled lung units
 – Increased physiologic dead space
 • Frequently exceeding 60% of each breath
 • Compliance is reduced
 • Increased resistance to blood flow

Results In:

• Impaired Gas Exchange
• Decrease lung compliance
• Pulmonary hypertension
Decreased Lung Compliance

- Hallmark of ARDS
- Low compliance due to the stiffness of poorly or non-aerated lung.

Signs & Symptoms

- Severe dyspnea
- Increased work of breathing
- Refractory hypoxemia
- Diminished LOC if hypoxemia is severe
- Radiographic diffuse bilateral infiltrates
 - interstitial and alveolar
 - without cardiomegaly
- PAOP – normal or low

Any questions????

Treatment

- The mainstay of therapy for ARDS is:
 - Management of the underlying disorder causing it.
 - ID treatable sources
 - Main treatment is supportive.

Pulmonary Hypertension

- Occurs in about 25% of pts with ARDS subjected to mechanical ventilation.
- Contributing factors
 - hypoxic vasoconstriction
 - vascular compression (by + pressure vent)

Pharmacological Treatment

- Antibiotics
- Steroids (stress dose, watch glucose for osmotic changes)
- Diuretics
- Avoid excessive fluid administration
Mechanical Ventilation

- Tidal Volume
 - Initial 6 ml/kg
 - Permissive hypercapnea
- FiO₂ 100% (maintain SaO₂, 92-94%)
- PEEP
 - 5-10 cm H₂O is effective in reducing intrapulmonary shunting and improving oxygenation
 - Frequently see PEEP > 12

Etiology

- Organisms
 - *Streptococcus pneumoniae*
 - Most common cause
 - *Mycoplasma pneumoniae*
 - *Haemophilus influenzae*
- Viruses
 - Relatively uncommon, accounting for 25-50% of nonbacterial pneumonias
 - Influenza A – most common

Mechanical Ventilation

- Sedation
 - May require Neuromuscular Blockade
- May use Pressure Controlled Ventilation
 - Sets pressure limits, allowing TV to fluctuate and prevents alveolar over distension

Signs & Symptoms

- Symptoms
 - Dyspnea
 - Chest pain
 - Wheezing cough
 - Fever, chills, rigor, weight loss
 - Night sweats
 - Fatigue
 - Weakness
 - Decreased energy
 - Anorexia

- Signs
 - Consolidation
 - Pleural effusion
 - Airway involvement (wheezing)
 - Crackles, rhonchi
 - Tachypnea
 - Tachycardia
 - Fever
 - Purulent sputum
 - Dry cough
 - H/A, fatigue, sore throat
 - N/V, diarrhea

Pneumonia

- Inflammation of lung parenchyma often characterized by consolidation
- Exudate, inflammatory cells, fibrosis
- Usually caused by infectious agents or microbes,
 - Can be caused by aspiration of gastric contents

Diagnosis

- Sputum gram stain
 - Determine organisms and coverage
- Sputum cultures / sensitivities
- CBC with Diff
- Blood cultures
- Chest x-ray
 - Generally shows localized infiltrates
- Bronch / invasive diagnostics
Treatment

- Antibiotics
- Fluids
- Oxygen
- Mechanical Ventilation

Status Asthmaticus

- Characteristics
 - Unrelenting acute asthma
 - Broncho-constriction despite treatment
 - Predominantly high deadspace region
 - Increased work of breathing
 - Bronchospasm, inflammation, mucous production / plugs
 - Increased minute ventilation

Asthma

- Chronic disease
- Characterized by airway hyper-reactivity
- Produces airway narrowing of a reversible nature

Pathophysiology

- Airway narrowing from
 - Bronchial smooth muscle spasm
 - Inflammation of bronchial walls, leading to increased permeability and thickening
 - Mucous plugging from increased production and decreased clearance of secretions

Pathophysiology

- Increased responsiveness to stimuli
- Widespread narrowing of airway
- Cellular infiltration and mucosal edema
- Airway hyperreactivity
 - Smooth muscle contraction
 - Excessive mucus production
 - Diminished secretion clearance
- V/Q abnormalities
- Increased work of breathing & airway resistance
- Hyperinflation of the lung, increased residual volume
- Host defect of altered immunologic state

Precipitating Events

- Infection, sinusitis
- Smoking
- Recent exposure (pollens, dust mites, animals, beta blockers)
- Emotional factors
- Gastroesophageal reflux
- Exercise
Impending Status Asthmaticus

- Recurrent episodes over a short period (2-7 days)
- Change in pattern of symptoms
 - Wheezing more severe or frequent
- Worsening dyspnea
 - Exercise limitation, at rest
- Cough with tenacious sputum
- Irritability

Treatment

- Bronchodilators
- Corticosteroids
- Oxygen
- Hydration
- Antibiotics if infection suspected
- Mechanical ventilation
 - Low tidal volumes
 - May need sedatives

Acute Pulmonary Embolus

- Extremely dyspneic
- Inspiratory and expiratory wheezing usually audible
- Prolonged expiratory phase
 - Pt tries to exhale trapped air through narrow airways
- Tachypnea
- Tachycardia
- Use of accessory muscles
- Flaring nares, pallor, cyanosis, increased work of breathing, and fatigue

- Disappearance of wheezing may be ominous sign
 - Airways completely obstructed

Other predisposing factors

- Age > 40
- Immobility
- Previous DVT
- Anesthesia / surgery
- Pregnancy / post-partum
- Trauma
Hemodynamic Consequences

- Obstruction stimulates neurohumoral stimuli
 - Increases PA pressures & PVR
 - Results in increased RV work
- Pulmonary HTN (mean PAP > 20 mmHg)
- RV will fail if mean PA pressure > 40 mmHg

Disruption in blood flow

- Alveoli become nonfunctioning units
 - Don’t participate in gas exchange
 - Increases deadspace
- To maintain gas exchange
 - Ventilation is shifted to the noninvolved areas of the lung
 - Results in constriction of distal airways
 - Leads to alveolar collapse and atelectasis

Signs & Symptoms

- Depends on severity
 - Sudden onset of chest pain
 - Cough
 - Hemoptysis
- Massive PE
 - >50% vascular occlusion
 - Mental clouding
 - Anxiety
 - Feeling of impending doom
 - Apprehension
- Dyspnea, tachypnea, increased work of breathing, tachycardia, reduced blood pressure, restlessness, syncope, asymmetric chest expansion

Goals of Care

- Restore pulmonary artery blood flow
- Maintain / Restore hemodynamic stability
- Relieve chest pain

PE Diagnostics

- ABG
 - May indicate respiratory alkalosis
- CXR
 - Nonspecific, frequently normal
- V/Q scan – not definitive, but suggestive
- Search for DVT – anticoagulation
- Pulmonary angiogram – most definitive test
- CT-angio may also be done
- ECG – usually normal, except in massive PE (new RBBB)

Pneumothorax

- Characteristics
 - Air in the pleural space
 - Leading causes
 - + pressure ventilation
 - Diagnostic procedure
 - Tension pneumo present when intrapleural pressure exceeds atmospheric pressure throughout expiration
 - Severity depends on size, underlying lung dz, whether a tension pneumo is present
Pneumothorax

- Symptoms
 - Dyspnea
 - Chest pain
 * Usually pleuritic
 * Typically acute onset

- Signs
 - Tachypnea
 - Tachycardia
 - Hypotension
 - Decreased respiratory excursion
 - Widened intercostal spaces
 - Absent or reduced breath sounds
 - Hyperresonant to percussion
 - Tracheal shift to contralateral side
 - Hypoaoxia +/- hypercapnia on ABG

Chest Trauma

- Blunt injuries
- Etiology & Risk factors
 - Auto accidents
 - Falls
 - Assaults
 - Explosions

- Penetrating injuries
- Etiology & Risk factors
 - All those causing blunt injuries &
 - Bullets
 - Knives
 - Shell fragments
 - Free-flying objects
 - Industrial accidents

Therapy

- Re-expansion of the collapsed lung
 - Chest tube insertion
- Adequate oxygenation
- Maintain cardiac output
- Reduce / control pain
- Observation

Signs & Symptoms

- Varies with specific injury
 - Tachypnea, dyspnea, pain, respiratory distress may occur with any injury

Chest Trauma

- Pathophysiology depends on type and extent of injury

- Trauma to the chest or lungs may interfere with any of the components involved with inspiration, gas exchange and expiration

Blunt injuries

- Visceral injuries without chest wall damage
 - Pneumothorax, hemothorax
 - Lung contusion
 - Diaphragmatic injury
 - Myocardial contusion, aortic rupture
 - Rupture of the trachea or bronchus
Blunt injuries

- Soft tissue injuries
 - Possibly a sign of severe underlying damage
 - Cutaneous abrasion
 - Ecchymosis
 - Laceration of superficial layers
 - Burns
 - Hematoma

- Others
 - Fracture of the sternum
 - Occurs either as a result of direct impact or as the indirect result of overflexion of the trunk
 - Rib fractures
 - As a result of overflexion or straightening.
 - Can be unifocal or multifocal
 - Multiple fractures result in flail chest
 - Often complicated by injuries to soft tissues and pleura
 - S/SX
 - Pain accentuated by chest wall movement, deep inspiration or touch
 - Flair chest – dyspnea and localized pain

Penetrating injuries

- Open sucking chest wounds
 - If opening is < diameter of trachea, minimal symptoms
 - If opening is > more air enters the pleural space, collapses the lung, impairs ventilation and gas exchange, results in dyspnea

Blunt injuries

- Others
 - Fracture of the sternum
 - Occurs either as a result of direct impact or as the indirect result of overflexion of the trunk
 - Rib fractures
 - As a result of overflexion or straightening.
 - Can be unifocal or multifocal
 - Multiple fractures result in flail chest
 - Often complicated by injuries to soft tissues and pleura
 - S/SX
 - Pain accentuated by chest wall movement, deep inspiration or touch
 - Flair chest – dyspnea and localized pain

Penetrating injuries

- Hemothorax, hemopneumothorax
- Combined thoraco-abdominal injuries
 - Bowel sounds may be heard in chest
 - Trachea / large airway damage
 - Sub-Q emphysema
 - Wounds of heart / great vessels
 - Dyspnea and backache, intense pain in chest or back unaffected by respiration

Penetrating injuries

- Pleural cavity & chest wall entered
- Damage to deeper structures – more serious
- Extent of injury and organs injured predicted by course of wound and nature of penetrating instrument
- High velocity projectiles do more damage

Diagnostic Studies

- CXR
- MRI or CT if stable enough
- Aortography – confirms dx of rupture of aorta or other great vessels
- Bronchoscopy – dx rupture of trachea or bronchus
- ECG
Goals of Care

- Patent airway
- ABG levels and pulmonary parameters restored and maintained
- Chest wall integrity and stability restored
- Establish integrity of pleural space
- Minimize chest pain and dyspnea

- Questions.........................