Renal

Jennifer MacDermott, MSN, RN, ACNS-BC, NP-C, CCRN
Clinical Nurse Specialist
Surgical Intensive Care Unit
The Ohio State University Medical Center

Objectives
- Identify abnormal assessment findings in a patient with renal disease.
- Describe therapeutic treatment interventions for a patient with renal disease.
- Identify clinical manifestations of electrolyte imbalance.
- Describe the standards in caring for a patient undergoing renal surgery or renal testing.

Renal Facts
- Function
 - Regulation of fluid and electrolytes
 - Excretion of metabolic waste products
 - Regulation of acid-base balance
 - Regulation of blood pressure
 - Formation of urine
 - Synthesis and maturation of red blood cells
- Approximately 25% of the cardiac output is delivered to kidneys
- Total renal blood flow in both kidneys is 1200ml/min

Glomerulus
- Site of fluid filtration from the blood
- Prevents blood cells and proteins from entering Bowman capsule

Glomerular filtration rate (GFR)
- Determined by
 - Capillary oncotic pressure (opposes filtration)
 - Capillary hydrostatic pressure (favors filtration)
 - Bowman's capsule hydrostatic pressure (opposes filtration)
- Affected by blood volume, tubule obstruction, collecting duct obstruction, low serum albumin

\[
GFR = \frac{(140 - \text{age in kg}) \times \text{weight in kg}}{72 \times \text{serum Cr in mg/dl}}
\]

Assessment of the Patient with Renal Dysfunction
- Overall appearance
- Weight
- Vital signs
 - Blood pressure
 - Temperature

Physical Assessment
Physical Assessment

- **Neurologically**
 - Level of responsiveness
 - Tremor
 - Weakness
 - Chvostek’s sign
 - Trousseau’s sign

- **Pulmonary**
 - Rate, rhythm, depth, and effort
 - Auscultate vesicular breath sounds and for presence of adventitious breath sounds
 - Dyspnea with exertion or orthopnea

- **Cardiovascular**
 - Heart rhythm
 - Jugular vein distention
 - Edema
 - Non-pitting
 - Pitting
 - +1 depth 2mm
 - +2 depth 4mm (<15 seconds)
 - +3 depth 6mm (15-60 seconds)
 - +4 depth 8mm (>60 seconds)
 - Auscultate heart sounds for murmur, click, and pericardial friction rub

- **Gastrointestinal**
 - Inspect for flank or abdominal ecchymosis
 - Auscultate renal arteries for presence of bruit
 - Palpate abdomen and liver border
 - Fluid wave assessment

- **Genitourinary**
 - Costovertebral angle (CVA) tenderness
 - Urine volume and color

Urine Laboratory Studies

- **Creatinine**
 - End-product of muscle metabolism
 - Rate of excretion determined by GFR
 - Normal: 0.7 – 1.5 mg/dL

- **Blood urea nitrogen**
 - End-product of protein metabolism
 - Normal: 10 – 20 mg/dL
 - Affected by decreased renal function, decreased fluid intake, increased catabolism, increased dietary protein intake

- **Creatinine clearance**
 - 24hr sample
 - Cr clearance = (urine Cr x urine volume)/serum Cr
 - Normal 110-120ml/min; significant renal dysfunction <50ml/min

- **Protein**
 - 24hr sample; normal = negative/no protein
 - May be indicative of glomerulonephritis, infection, trauma, or intrarenal ARF

- **Urine sediment**
 - RBCs, WBCs, and/or casts; normal = negative
 - May be indicative of prerenal ARF, kidney stones, trauma, prostatic disease, glomerulonephritis, rhabdomyolysis, infection

- **Urine specific gravity**
 - Normal 1.005-1.030
 - Increased levels occur with fluid volume deficit, DM, and glomerular membrane disease because protein/glucose are passed into urine
 - Decreased levels are the result of the kidneys inability to excrete the usual solute load
Urine Laboratory Studies

- Urine osmolarity
 - Dependent on resorption or excretion of water in the tubules
 - Normal 500-1200 mOsm/kg
 - Increased osmo levels & decreased UO → fluid volume deficit
 - Decreased osmo levels and increased UO → fluid volume overload
 - Decreased osmo levels and decreased UO → acute kidney injury

Renal Tests and Procedures

Renal Ultrasound
- Measurement of dimensions of the kidney, evaluation of mass lesions, detection and grading of fluid accumulation
- Advantages: painless, non-invasive, minimal preparation, no IV contrast or radiation exposure
- Disadvantages: minimal visualization in obese patients, less direct visualization compared to other available renal tests and procedures
- Pre-procedure: only clear fluids after midnight the day of the test

KUB
- Kidney-ureter-bladder (KUB)
- Determines position, structure, and size of the kidneys, urinary tract, and pelvis
- Advantages: painless, non-invasive, minimal preparation, no IV contrast exposure
- Disadvantages: radiation exposure, less direct visualization compared to other available renal tests and procedures
- Diagnostic for calculi and masses

Computed Tomography (CT)
- Radioscope administration: IVP is absorbed in kidneys allowing for visualization of kidney
- Spiral CT allows for visualization of vessel perfusion, tumors, cysts, stones, calculi, hemorrhage, necrosis, and trauma
- Advantages: painless, non-invasive, minimal preparation
- Disadvantages: IV contrast and radiation exposure

Magnetic Resonance Imaging (MRI)
- High energy radiofrequency waves penetrate tissues
- Allows for visualization of trauma, cysts, masses, malformation of vessels or tubules, stones, calculi, and necrosis
- Advantages: painless, non-invasive, minimal preparation, no IV contrast or radiation exposure

Renal Angiography
- Assessment of renal vasculature and precise measures of renal blood flow
- Pre-procedure
 - Informed consent
 - Clotting studies and blood typing
 - IV access; preparation of procedural sedation
- Intra-procedure
 - Percutaneous procedure involving contrast injection for radiological visualization of blood flow
 - Manual pressure application to access site following removal of catheter
- Post-procedure
 - Vital sign assessment/documentation q15min x8, q1hr x4, and q4hrs x6
 - Assessment of access site
 - Assessment of distal extremity

Renal Biopsy
- Histological assessment
- Contraindications: serious bleeding disorders, excessive obesity, severe hypertension
- Pre-procedure
 - Informed consent
 - Clotting studies and blood typing
 - IV access; preparation of procedural sedation
- Intra-procedure
 - Percutaneous procedure utilizing biopsy needle
 - Open biopsy under general anesthetic
- Post-procedure
 - Vital sign assessment/documentation q15min x8, q1hr x4, and q4hrs x6
 - Assessment of urine color
 - Assess for abdominal bruising
Renal Dysfunction

Acute Renal Failure
- Severe reduction in renal function that occurs suddenly
- Diagnosed with an acute increase in serum creatinine >0.5 mg/dl
- Manifestations
 - Usually associated with decrease in GFR
 - Reduced urine output
 - Retention of nitrogenous waste or azotemia (elevated BUN)
- Etiology
 - Prerenal: result of decreased kidney perfusion
 - Intrarenal: occurs when the nephron is damaged
 - Postrenal: occurs due to obstruction of urine outflow distal to the kidney

Differentiating Between Prerenal, Intrarenal, and Postrenal Failure

<table>
<thead>
<tr>
<th></th>
<th>BUN:Cr</th>
<th>Urine specific gravity</th>
<th>Urine osmolality</th>
<th>Urine Na+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.003 – 1.040</td>
<td>80–1300 mOsm/L</td>
<td>10 – 40 mEq/L</td>
<td></td>
</tr>
<tr>
<td>Prerenal</td>
<td>>20:1</td>
<td>Increased</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Intrarenal</td>
<td>10:1</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Increased</td>
</tr>
<tr>
<td>Postrenal</td>
<td>10:1</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Chronic Renal Failure
- Progressive loss of renal function occurring over months to years
- GFR <60 ml/min for ≥3 months
- Irreversible condition that leads to end-stage renal disease (ESRD)

Chronic Renal Failure
- Causes
 - ATN
 - Congenital conditions
 - Cystic disorders (polycystic kidney disease)
 - Neoplasms
 - Infections
 - Systemic conditions
- Results in tubular atrophy, glomerulosclerosis, interstitial fibrosis, and interstitial mononuclear cellular infiltrates → damage to nephrons

Chronic Renal Failure
- Stages
 - Decreased renal reserve: <75% of nephrons non-functioning; no signs or symptoms; labs normal
 - Renal insufficiency: 75 – 90% of nephrons non-functioning; polyuria and nocturia; slight elevation BUN and Cr; may be controlled with diet and meds
 - ESRD: >90% of nephrons non-functioning; azotemia; fluid and electrolyte abnormalities; dialysis or transplant necessary
Therapeutic Management of the Patient with Renal Dysfunction

Prevention of Renal Dysfunction
- Maintain adequate hydration
- Maintain nutritional status
- Remove indwelling catheters as soon as possible
- Treat episodes of hypotension aggressively
- Monitor nephrotoxic drug administration
- Control blood glucose levels and blood pressure in diabetics to prevent renal complications
- Diuretics
- Calcium channel blockers
- Acetylcysteine

Management of Renal Dysfunction

Medications
- ARF
 - IV fluids (prerenal)
 - Diuretics
 - Albumin
- CRF
 - ACE inhibitors
 - Calcium channel blockers
 - Calcium and Vitamin D supplementation
 - Phosphate binders
 - Epogen
 - Management of electrolyte imbalances

Nutrition
- Low protein diet
- Fluid, potassium, and sodium restrictions
- Water-soluble vitamin, pyridoxine, and folic acid supplementation
- Transplantation: may be treatment option for patients with ESRD

Management of Renal Dysfunction

Dialysis
- Results in removal of waste materials and excess fluid
- Results in correction electrolyte abnormalities
- Indicated in patients with fluid overload and subsequent, pulmonary edema, HTN, HF, electrolyte imbalances, and/or acid-base imbalances
- Types
 - Peritoneal
 - Hemodialysis
 - Continuous renal replacement therapy CRRT

Peritoneal Dialysis
- Removal of solutes and fluid through instillation of a dialysate solution into the peritoneal cavity
- Exchanges occur via Tenckhoff (peritoneal) catheter
- Requires instillation every 4 – 6 hours (5 – 10 minute instillation, 30 – 45 minute dwell time, 20 minute drain)
- Nursing care
 - Warm dialyzing fluid to body temperature
 - Monitor vital signs
 - Maintain accurate I&O and weight records
 - Observe for signs of peritonitis
 - Prevent constipation
Peritoneal Dialysis

- Complications
 - Technical: incomplete recovery of fluid, leakage around catheter, blood-tinged peritoneal fluid
 - Physiologic: abdominal viscera irritation or perforation, pulmonary complications, hypovolemia and hypernatremia, disequilibrium syndrome, hyperglycemia, peritonitis, hypertension, pain/discomfort, immobility

Intravenous Access

- Arteriovenous graft or fistula
 - Patency
 - Palpate for thrill
 - Auscultate for bruit
 - Adequate circulation to distal extremity
- Do not take BP or draw blood from access limb
- Temporary dialysis catheter
 - Inspect access site for signs of inflammation or infection
 - Verify placement radiographically prior to use
 - Remove anticoagulant from line prior to flushing device
 - Do not unclamp catheter unless preparing dialysis

Hemodialysis

- Rapidly correct biochemical disturbances
- Indications
 - Chronic renal failure
 - Complications of acute renal failure, i.e. uremia, fluid overload, acidosis, hyperkalemia, drug overdose
- Contraindications
 - Low cardiac output
 - Sensitivity to abrupt changes in volume status

Hemodialysis

- Nursing care
 - Documentation of frequent vital signs
 - Monitor and document flow rates
 - Monitor lab values
 - Daily patient weights
 - Hold medications removed by dialysis until after treatment
 - Avoid administration of antihypertensive meds 4 – 6 hours before treatment

Hemodialysis

- Treatment 3 – 4 hours
- Complications: hypotension, dysrhythmias, muscle cramps, dialysis disequilibrium syndrome, vascular access infections, hemolysis, air embolism

Continuous Renal Replacement Therapy (CRRT)

- Indications
 - ARF or CRF with hemodynamic instability and/or those requiring gradual solute removal
 - Patients requiring more than a 3 – 4 hour treatment to correct metabolic imbalances of ARF
 - May absorb proinflammatory substances in patients with septic shock
Continuous Renal Replacement Therapy (CRRT)

- Treatment administered continuously, 24hr/day
- Treatment may be interrupted for transportation of patient for a diagnostic test or procedure or to change the circuit
- Nursing care
 - Monitor hemodynamic status
 - Assess flow rates, hemofilter, and ultrafiltrate hourly
 - Monitor lab values

Complications
- Technical: clotting of filter, vascular access failure, clots or kinks in the catheter, rupture or leakage of filter, air in the circuit
- Physiologic: hypothermia, air embolism, hypotension

Electrolyte Emergencies

Potassium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypokalemia</td>
<td>Decreased K⁺ intake</td>
<td>Orthostatic hypotension</td>
<td>Replace K⁺</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>Shift from K⁺ from serum to cell</td>
<td>Muscle weakness → paralysis</td>
<td>Correct alkalosis</td>
</tr>
<tr>
<td></td>
<td>Increased K⁺ excretion</td>
<td>Dysrhythmias</td>
<td></td>
</tr>
</tbody>
</table>

Management:
- Replace K⁺
- Correct alkalosis

Hyperkalemia

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperkalemia</td>
<td>Acidosis</td>
<td>Orthostatic hypotension</td>
<td>Replace K⁺</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Renal dysfunction</td>
<td>Na/VO2M</td>
<td>Correct alkalosis</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Drugs</td>
<td>Muscle weakness → paralysis</td>
<td>Correct alkalosis</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Cell death</td>
<td>Dysrhythmias</td>
<td>Correct alkalosis</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Excessive intake</td>
<td></td>
<td>Correct alkalosis</td>
</tr>
</tbody>
</table>

- Kayexalate
- Loop diuretics
- Insulin/glucose
- Na bicarbonate
- High dose intrahospital beta-2 agonists
- CaO or Ca gluconate
- Dialysis

Hyperkalemia Induced EKG Changes
Potassium and pH Balance

- Potassium concentration will fluctuate 0.6mEq/L for every 0.1 unit change in extracellular pH
- Acidosis → potassium moves out of cell
- Alkalosis → potassium moves into cell

Potassium and pH Balance

Example

<table>
<thead>
<tr>
<th></th>
<th>Na</th>
<th></th>
<th>K</th>
<th></th>
<th>Cl</th>
<th>pH Correction</th>
<th>Cr</th>
<th></th>
<th>BUN</th>
<th>Phos</th>
<th>Mg</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>136</td>
<td></td>
<td>4.3</td>
<td></td>
<td>99</td>
<td>100</td>
<td>1.2</td>
<td></td>
<td>14</td>
<td>3.1</td>
<td>2.2</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Sodium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponatremia (<135mmol/L)</td>
<td>-Excessive ADH</td>
<td>-Disorientation</td>
<td>-Correction of underlying cause</td>
</tr>
<tr>
<td></td>
<td>-Excessive infusion</td>
<td>-Decreased mental status</td>
<td>-Restrict free water intake</td>
</tr>
<tr>
<td></td>
<td>-IV D5W</td>
<td>-Lethargy/coma</td>
<td>-<0.9% NS or hypertonic 3% saline</td>
</tr>
<tr>
<td></td>
<td>-Barturic overdose</td>
<td>-Seizures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Excessive beer ingestion</td>
<td>-N/V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Diuretics</td>
<td>-Weakness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Replacement of water but not salt loss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sodium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernatremia (>145mmol/L)</td>
<td>-IV infusion hypertonic saline</td>
<td>-Reduced fluid intake</td>
<td>-Free water administration</td>
</tr>
<tr>
<td></td>
<td>-Na bicarb administration</td>
<td>-Diabetes</td>
<td>-Hypertonic fluid administration</td>
</tr>
<tr>
<td></td>
<td>-DI</td>
<td>-Diarrhea, vomiting, diuresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Thirst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Polyuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Agitation/ restlessness/ decreased LOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Hypertension/ tachycardia/ pitting edema</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Dyspnea/ respiratory arrest</td>
<td></td>
</tr>
</tbody>
</table>

Calcium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocalcemia (ionized Ca <4.0mg/dl)</td>
<td>-Sepsis</td>
<td>-Hypotension</td>
<td>-Control/correct underlying cause</td>
</tr>
<tr>
<td></td>
<td>-Burns</td>
<td>-Dysrhythmias/ cardiac arrest</td>
<td>-Replace calcium</td>
</tr>
<tr>
<td></td>
<td>-Rhabdomyolysis</td>
<td>-Muscle spasm/ tetany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Pancreatitis</td>
<td>-Seizures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Malabsorption</td>
<td>-Anxiety/ iritability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Liver/renal disease</td>
<td>-Chvostek's sign</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Hyperparathyroidism</td>
<td>-Trousseau's sign</td>
<td></td>
</tr>
</tbody>
</table>

Calcium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercalcemia (ionized Ca >5.0mg/dl)</td>
<td>-Malignancy</td>
<td>-N/V, flank pain</td>
<td>-Control/correct underlying cause</td>
</tr>
<tr>
<td></td>
<td>-Immobilization</td>
<td>-Weakness</td>
<td>-0.9% NS</td>
</tr>
<tr>
<td></td>
<td>-Excessive intake vitamin A or D</td>
<td>-Depressed mental status/ confusion/coma/ irritability</td>
<td>-Diuretics</td>
</tr>
<tr>
<td></td>
<td>-Thyrotoxicosis</td>
<td>-Hypertension or hypotension</td>
<td>-Dialysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Conduction abnormalities/heart blocks</td>
<td></td>
</tr>
</tbody>
</table>
Phosphate Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypophosphatemia (<2.5mg/dl)</td>
<td>Acute alkalosis, Drugs, Hypokalemia, hypomagnesemia, Malabsorption, malnutrition, Diarrhea</td>
<td>Muscle weakness, Respiratory failure, Rhabdomyolysis, Disorientation/coma/seizures, Hepatic/immune dysfunction, Hemolysis/impaired platelet function</td>
<td>Control/correct underlying cause, Replace phosphate</td>
</tr>
</tbody>
</table>

Hyperphosphatemia (>4.5mg/dl)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive phosphate intake</td>
<td>Symptoms of hypocalcemia, Aching/stiff joints, itching, Conjunctivitis</td>
<td>Correct hypocalcemia, Glucose/insulin, Dialysis</td>
</tr>
</tbody>
</table>

Magnesium Balance

<table>
<thead>
<tr>
<th>Imbalance</th>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypomagnesemia (<1.8mg/dl)</td>
<td>Renal tubular dysfunction, Diuresis, Hypokalemia, Drugs, Diarrhea, Recovery from hypothermia, Alcoholism</td>
<td>Hypokalemia/hypocalcemia, Hypokalemia/insufficiency, Hypokalemia, Hypocalcemia, Delirium, Disorientation/coma, Tremor/seizure</td>
<td>Control/correct underlying disease, Replace magnesium</td>
</tr>
</tbody>
</table>

Hypermagnesemia (>2.5mg/dl)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Clinical Presentation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion seawater, Excessive Mg ingestions, Oliguric renal failure, Adrenal insufficiency</td>
<td>Bradycardia/arrhythmias/cardiac arrest, Hypokalemia, Hypoglycemia, Lethargy, Respiratory depression, Paralysis</td>
<td>Diuretics, Dialysis</td>
</tr>
</tbody>
</table>