Mechanotransduction & Acute Lung Injury: An Engineering Approach

Respiratory Mechanobiology Laboratory
S.N. Ghadiali (PI)

Wexner Medical Center

Department of Biomedical Engineering,
Ohio State University, Columbus OH

Dept. of Internal Medicine: Pulmonary, Allergy, Critical Care and Sleep Medicine
Dorothy M. Davis Heart and Lung Research Center
Ohio State University Medical Center, Columbus OH
Respiratory Mechanobiology Laboratory

Acute Lung Injury

IPF (Fibrosis)

Lung Cancer

URIs & Otitis Media

Klassen Research Day, OSUWMC, 1/22/2015
Acute Lung Injury & Ventilator Induced Lung Injury

• Infections (H1N1, SARS) → Necrosis and Detachment of alveolar epithelial cells.
• Alveolar-capillary barrier disruption, airway flooding, severe hypoxia
• 75k deaths/yr in US (Rubenfeld GD NEJM, 2005)
 Breast + Prostate cancer: 74k deaths/yr (ACS 2011 Cancer Facts)
• Standard of care: Mechanical Ventilation
 • Ventilator Induced Lung Injury
 • 30% to 40% mortality rates

Figure 3. The Normal Alveolus (Left-Hand Side) and the Injured Alveolus in the Acute Phase of Acute Lung Injury and the Acute Respiratory Distress Syndrome (Right-Hand Side).

Mechanical properties of cells govern several biological functions

- Motility, growth, division

Division (Mitosis)

Crawling

klemkelab.ucsd.edu/images/research/proteomics/fig3.gif
Mechanotransduction & Cell Mechanics

- Mechanical properties of cells govern several biological functions
 - Motility, growth, division

- Mechanotransduction: Mechanical Stimuli → Gene Signaling
 - Regulates Lung Morphogenesis (Varner & Nelson, 2014, Development)

- Question: What is the role of Mechanics and Mechanotransduction in Ventilator Induced Lung Injury?

Lung Mechanics & Ventilation Induced Lung Injury (VILI)

- Low Volume Injury (Atelectrauma)
- High Volume Injury (Volutrauma)

- Ventilated ALI
- Normal
- Oxygenation
- Lower inflection point
- Low Volume Injury (Atelectrauma)
- Ventilated

Klassen Research Day, OSUWMC, 1/22/2015
Deformation-Induced Injury of Alveolar Epithelial Cells
Effect of Frequency, Duration, and Amplitude
DANIEL J. TSCHUMPERLIN, JANE OSWARI, AND SUSAN S. MARGULIES
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania

Klassen Research Day, OSUWMC, 1/22/2015

High Stretch causes:
- Cell death (membrane rupture)
- Epithelia and Endothelial Barrier dysfunction
- Activation of pro-inflammatory signaling

VT: 12 ml/kg → 6 ml/kg
Mortality: 39.8% → 31.0%

Atelectasis at Low Lung Volume - Derecruitment

- Surfactant inactivation causes alveolar instability, collapse and reopening (Nieman et al.)

- Barrier Disruption via Oleic Acid Injury causes flooding of non-collapsed alveoli (Hubmayr et al.)

- Airway Recruitment:
 - Complex fluid mechanical stress on epithelium (Ghadiali et al., JFM, 2003)
 - Do these forces exacerbate lung/cell injury?

Low Volume Lung Injury: Atelectrauma

- Simulate Atelectasis in rats and pigs:
 - ZEEP, NEEP or surfactant inactivation (DOSS)

- Reopening causes barrier disruption and pro-inflammatory signaling

- Prediction: Protocols that prevent atelectasis (high PEEP) should prevent lung injury.
Preventing Atelectrauma is Difficult

- Higher PEEP does not improve clinical outcomes
 - ↑ pressures cause barrier disruption and inflammation (Hong CM et al Anesthesia & Analgesia, 2010)
Biomechanics of Cell Injury during Atelectasis

Complex Set of Mechanical Forces on Epithelial Cells

- Pressure
- Pressure Gradient
- Shear Stress

Can changes in the cell’s mechanical properties prevent this type of injury?
Simple Ideas Don’t Always work

- Rigid cells are not protected from injury! (Yalcin, AJPLCMP, 2009)
- Engineering approach for complex systems
 - model the complex system (computational)
 - use model to suggest appropriate intervention.
 - Validate model predictions – clinical translation
Computational models of cell deformation during airway reopening (Ghadiali et al., JFM, 2003, Dailey & Ghadiali, JAP, 2009, Dailey, et al., Biomech Model Mechano Bio, 2009)

Conduct “in-silico” experiments → how to prevent deformation/injury?
• Computational models of cell deformation during airway reopening (Ghadiali et al., JFM, 2003, Dailey & Ghadiali, JAP, 2009, Dailey, et al., Biomech Model Mechano Bio, 2009)

• Conduct “in-silico” experiments → how to prevent deformation/injury?

![Graph showing relationship between power-law exponent and fluidization.](image)

- $G_0 = 195$ dyn/cm2
- $2G_0$
- $3G_0$

$\varepsilon_{eff,max}$ [%]

$\alpha = 0.15$

$\alpha = 0.35$

Dailey, et al., Biomech Model Mechano Bio, 2009
• Confirm computational prediction: ↑ power-law exponent → more fluid-like cell → ↓ deformation/injury. (Yalcin, AJPLCMP, 2009)

• Clinical Implication: Pharmaceuticals that fluidized the actin cytoskeleton may be useful in preventing airway reopening injury.
Clinically Relevant Fluidization

• Simvastatin – used to control serum cholesterol
 • moderate concentrations fluidize the actin cytoskeleton and reduce cell injury.
 • However, clinical trials and human studies are inconclusive (Kor, Crit Care Med. May 2012)

• Controlling Mechanically Induced Inflammation may be more important!!!

Mechanotransduction & Lung/Systemic Inflammation

Organ Failure occurs when vital organs stop working. It is the leading cause of death in the intensive care unit.

Mechanical Forces in the Lung
↓
Cytokine Release

http://www.sec.gov/Archives/edgar/data/1175151/000114420412033733/v315508_ex99-1.htm
• Air-liquid interface culture of primary human small airway epithelial cells (HAEpC, Promo-cell), polarized epithelium.

• Expose cells to 20 cmH₂O oscillatory pressure 0.2 Hz.

• Models high PEEP inflammation seen in humans.

• Assess IκB, NF-κB and cytokine production / secretion.

Pressure-Induced Inflammation in Primary Human Cells
Pressure-Induced Inflammation in Primary Human Cells

- Mechanically-induced inflammation is magnitude and time dependent.
- Rapid activation: 8-12 hours.
- Does this pressure-induced inflammation occur in-vivo?
Pressure Induced Inflammation In-Vivo

- C57/BALC mice ventilated for 4 hrs at high and low PEEP (3 and 6 cmH2O).
 - ↑ PEEP →
 - Normal Lung Mechanics
 - ↑ inflammatory response
 - Can changes in cell/cytoskeletal mechanics be used to regulate this inflammation?
Cell Mechanics does not Regulate Pressure-Induced Inflammation

- Fluid-like cells exhibit more inflammation!

![Graph showing fold change in NF-kB activation](image)

- *p < 0.05 wrt unloaded control
- ^p < 0.05 wrt no treatment

No Agent (PBS control)

Latrunculin, 0.5uM

(actin depolymerizer, soft)

Klassen Research Day, OSUWMC, 1/22/2015
Cell Mechanics does not Regulate Pressure-Induced Inflammation

- Fluid-like cells exhibit more inflammation!

- Simvastatin can reduce inflammation but only at very large dose. Due to pathway inhibition not cell mechanics.

- Is there a biological way to regulate mechanotransduction/inflammatory gene expression?

Mean +/- SEM. * Significant difference (p-value<0.05) vs. no-pressure, and ^ significant difference (p-value<0.05) with respect to other doses evaluated.
MicroRNAs

- Regulate gene expression by suppression of translation or mRNA degradation
- MiRISC recognize target mRNA through **partial sequence complementarity**. Therefore, a single miRNA can mildly down-regulate hundreds of targets.
- miRNAs play an important role in angiogenesis, cancer and immune function (Urbich, Cardiovasc Dis, 2008; Croce, Nat Rev Genet, 2009; Sonkoly, Cancer Biol, 2008).
- Can miRNA’s regulate **mechanically induced inflammation**?
Mir-146a is a Mechanosensitive microRNA

A) B)

- Which miRNAs are mechanosensitive?
- Mechanical Pressure caused changes in several miRNAs
- miR-146a was significantly ↑ and is known to play a role in regulating pathogen induced inflammation.
- PCR screen confirmed that miR-146a was the most de-regulated miRNA.
- Is miR-146a trying to regulate mechanically-induced inflammation?
miR-146a Regulates Mechanically-Induced Inflammation!

Over-expression miR-146a (>100x) results in dramatic decrease in cytokine production.

Question: What targets of miR-146a are regulating mechanotransduction in lung epithelia?
miR-146a targets innate immunity (IRAK1 & TRAF6)
Silencing these targets also regulates mechanically-induced inflammation
Do other miRs that regulate innate immunity play a role in mechanotransduction?
Several other miRNAs (miR-146a, miR-155, miR-33a & miR-181a) can regulate pathogen induced inflammation.

Can these “Inflamma-miRs” regulate mechanically induced inflammation?

Yes! – but miR-146a appears to be the most effective.
Effectiveness of MiR-146a

• miR-146a is effective over a wide range of ventilation pressures (10-30 cmH2O) & frequencies (7-18 breaths/min)

• In-vitro experiments in lung epithelia (type II pneumatocytes and small airway)

• In-vivo translation: need to target right type of inflammation
Acute Lung Infection: Activated Alveolar Macrophage → neutrophil recruitment and bacterial/viral clearance (good inflammation)
Targeted Drug Delivery

• Acute Lung Infection: Activated Alveolar Macrophage → neutrophil recruitment and bacterial/viral clearance (good inflammation)

• Mechanical Ventilation: Mechanical Forces on Lung Epithelium, ↑ inflammation due to mechanotransduction (bad inflammation)

• Goal: Deliver microRNAs to lung epithelial cells only to reduce mechanically-induced lung inflammation.
Nanotechnology Based Drug Delivery

- Collaboration with: Drs. Jim Lee & Yun Wu (OSU NSEC and U Buffalo)

- **Technology: Lipoplex nanoparticles** (Wu et al, Mol Therapy Nuc Acid, 2013; Wu et al, BMES Annual Meeting, 2014; Wu et al, Nuc Acid Delivery, 2013)
 - Untargeted or Surfactant-C targeted (type II pneumocytes).
 - Nasal or Aerosol Delivery in C57BL/6 mice → high biodistribution to the lung
Nanotechnology Based Drug Delivery

• Delivery of Cy5 loaded lipoplex → ~90% delivery to ATII cells

• Delivery of test microRNA (miR-486) → ↑↑ expression in ATII cells

• Ongoing studies: delivery miR-146a → effect on mechanically induced lung inflammation.
Current Activities: Ex-vivo Translation

- Ex-vivo Model of Ventilation Induced Lung Injury

- Current projects:
 - miR-delivery to lungs ex-vivo
 - Scale up to human lungs (Dr. Bryan Whitson, MD, PhD, Surgery).

![Graph showing IL-1B Concentration (pg/mL) over time with annotations for 0 min and 60 min.](image)
• Engineering Approach → Changes in cell mechanics can be used to prevent physical injury to the lung – Simvastatin in clinical trials

• Mechanotransduction & microRNAs → miR146a is mechano-sensitive and can regulate mechanically-induced inflammation

• Nanotechnology → Delivery of microRNAs to specific cells in the lung (epithelial)

• Ongoing projects:
 • use miR146a to regulate ventilation induced lung inflammation without compromising innate immunity
 • Use ex-vivo models of VILI to test larger scale delivery and treatment of lung inflammation (porcine and human)
Acknowledgements

Funding: HHMI Medicine into Graduate Program
National Science Foundation CAREER 0852417
National Institutes of Health (RO1 DC007230 & P50 DC007667)

Postdocs: Melissa Hallow, Cosmin Mihai, Yan Huang, **Natalia Higuita-Castro**, Vasudha Shukla.

Students: Cagtay Yalcin, Hannah Dailey, Francis Sheer, Xiaodong Chen, Maureen Weber, Rachel Zielinski, Leo Volakis, Jennifer Malik, **Kevin Nelson**, Justo Torres-Rodriguez, **Chris Bobba**.
Questions?